

Why is 'Resampling' crucial in a particle filter?

- To distribute particles uniformly
- To focus particles around the right position
- To distribute particles in Gaussian distribution
- To distribute particles in linear distribution

Correction

The value of the weights is related to:

Size of the sample

Fit to measurement

Amplitude of movement

How would adding more noise in the 'Motion Update' reflect the hardware features ?

- it correspond to less precise motor power control
- it correspond to less precise ground color sensor
- it correspond to less precise wheel motion encoder
- it correspond to more precise ground color sensor

Correction

How does the memory requirement of a particle filter compare to a histogram-based approach (=last exercise session with the Thymio) as the environment size increases?

- Particle filter memory increases slightly, while histogram-based increases exponentially.
- Both increase linearly with environment size.
- Particle filter memory decreases, while histogram-based increases.
- Particle filter memory increases linearly, while histogram-based remains constant.

Correction

Say we are resampling over and over again, without any motion update. What will happen in the limit?

- A) The filter will spread out evenly across the grid
- B) The filter will maintain an equal distribution of particles across different states
- C) The filter will converge to a single position
- D) The filter will keep oscillating between different particles
- E) I don't know